### Standardization Collaborative (UASSC)



### **ANSI Unmanned Aircraft Systems**

### 2018 Plenary Meeting

September 20, 2018



# Vertical Infrastructure Inspections

### Use cases:

Buildings, Communications Towers



#### Issues:

ANSI

- BPV UAS not in current guidelines by ASME for BPV inspections (internal and external)
- Cranes regulations, location (ground, roof top, waterway), proximity (structures and infrastructure), public safety, environment (weather, navigation, communications)
- Building Facades regulations, environment (weather, navigation, communications), public \_ safety (e.g. Sep 12th – DJI Phantom Crashes Inspecting Sinking Millennium Tower in San **Francisco**)
- LR Res & Com Properties location (confined space within property boundaries), flight path (VLOS, low altitude, over people)
- Comms Towers location (open v confined space, ground, roof top), proximity, environment (weather, navigation, communications), flight path (VLOS, low altitude, over people)



Boilers & Pressure Vessels, Cranes, Building Facades, Low-Rise Residential and Commercial



# Vertical Infrastructure Inspections (cont..)

### Gaps:

- No known published standards covering the use of UAS for these types of Vertical Infrastructure \_ Inspections.
- There is a need for a set of best practices or standard operating procedures (SOP) to inform industry \_\_\_\_ practitioners on how to conduct Vertical Infrastructure Inspections using UAS
  - For example, NATE best practices published in Jan. 2017: "Unmanned Aerial Systems Operations Around Vertical Communications Infrastructure")
- Recommendations:

ANSI

- BPV develop standards for UAS BPV inspections (both internal and external)
- Cranes complete work on ASME B30.32 to address crane inspections using UAS
- Building Facades expand work on <u>ASTM WK58243</u>, Visual Inspection of Building Facade using Drone to include non-visual sensors
- LR Res & Com Properties develop a guide or SOPs for low-rise residential and commercial inspections using UAS
  - Comms Towers conduct more research to determine what standards, if any, are required for inspections using UAS





## Linear Infrastructure Inspections

Use cases: Bridges, Railroads, Power Transmission Lines

#### Issues:

ANSI

- Bridges features (type, size, location), flight path (access, VLOS v BVLOS, low \_ altitude, impact on traffic), environment (weather, navigation, communications
- Railroads location (urban v country), proximity (structures, infrastructure, hazardous materials), flight path (confined space v open space, VLOS v BVLOS, low altitude, over people), environment (weather, navigation, communications)
- Power Transmission Lines location (urban v country), proximity (power and telecommunication assets share transmission corridors), flight path (confined space v open space, VLOS v BVLOS, low altitude, over people), high-risk environment (high voltage assets, potential EMI, weather, navigation, communications





# Linear Infrastructure Inspections (cont.)

### Gaps:

- inspections using a UAS.
- BVLOS and night operations for railroad inspection.
- using UAS.



Recommendations:

ANSI

\_\_\_\_ the potential for UAS BVLOS and night operation.

Railroads – develop guidance incorporating OSHA and FRA requirements for performing UAS inspections of hazardous material rolling stock.



Bridges – there are no known published or in-development standards for conducting bridge

 Railroads – a standard is needed to address rolling stock inspections by UAS for regulatory compliance of transporting hazardous materials. Standards are also needed to address

 Power Transmission Lines – a standard is needed to address UAS pilot qualifications and operational best practices in how to conduct a safe inspection of power transmission lines

Develop standards for the use of UAS to conduct inspections of Linear Infrastructure, including bridges, railroads and power transmission lines. These standards should address



### Wide Area Environment Infrastructure Inspections/ Precision Agriculture

Management



#### Issues:

ANSI

- \_\_\_\_ communications), policy and regulatory (framework lags behind technology)
- communications)
- \_ (weather, navigation, communications)



Use cases: Environmental Monitoring, Pesticide Application, Livestock Monitoring and Pasture

Environmental Monitoring – location (open space), proximity (structures and infrastructure), flight path (BVLOS, low altitude, over people), environment (weather, navigation,

- Pesticide Application – application type (precision, spot, wide area), location (open space), proximity (obstacles, people, animals, etc.), flight path (VLOS v BVLOS, low altitude – statistically dangerous), public safety (error margins), environment (weather, navigation,

Livestock Monitoring and Pasture Management – location (confined space within property boundaries), proximity (obstacles), flight path (VLOS v BVLOS, low altitude), environment



## Wide Area Environment Infrastructure Inspections/ Precision Agriculture (cont..)

### Gaps:

**ANSI** 

- Environmental Monitoring no UAS standards gap identified. Best practices are available through published articles and non-profit environmental organizations, including several specifically relating to the use of UAS.
- Pesticide Application Standards are needed to address pesticide application using UAS. Issues to be addressed include operational safety, environmental protection and integration into the NAS.
- Livestock Monitoring and Pasture Management no UAS standards gap identified. Many published best practices for precision agriculture available, including several specifically relating to the use of UAS to monitor livestock.

### Recommendations:

- Environmental Monitoring, Livestock Monitoring and Pasture Management should be covered by standards being developed for UAS BVLOS operations and UAS low-altitude aerial surveys/inspections.
  - Pesticide Application develop standards for pesticide application using UAS.





# **Commercial Package Delivery**

areas and to drop-off stations in more densely populated urban areas.

#### Issues:

(weather, navigation, communications)

### Gaps:

**ANSI** 

- \_\_\_\_
- and UTM need to evolve before such operations can become ubiquitous.



- Recommendations:
  - complete work on ASTM WK60746, WK62344, WK27055, and WK63418.
  - consider adapting SAE J2735 for UAS.





Use cases: Operations include deliveries made directly to consumer homes in suburban and rural

location (urban, suburban, rural), proximity (structures and infrastructure), flight path (confined space v open space, VLOS v BVLOS, low altitude, over people), environment

standards are needed to enable UAS commercial package delivery operations.

standards and regulatory framework supporting BVLOS operations, remote ID & tracking,



## **Questions for WG3**

- 1) standards clearly stated?
- What could be improved? 2)
- **२**)
- Are there any [use cases] issues or gaps that have been overlooked? 4)





### Is the presentation of [use cases] issues, gaps, and recommendations for new or revised

Is there any content that conflicts with or should be consolidated with another section?

